A görög matematika kibontakozása

Azok számára állítottam össze ezt a kis kötetet, akiket érdekelnek a történet, a tudománytörténet vagy esetleg éppen a matematikatörténet kérdései. Olyan formában igyekeztem tárgyalni az érintett problémákat, hogy az is követni tudja, megértse az előadást, és lehetőleg ne találja unalmasnak mondanivalómat, akinek nem különösebben szívügye a matematika. Úgy gondolom, hogy a tárgy maga, a görög matematikai kibontakozása, több szempontból érdekes lehet. Lényegében arról a kérdésről van itt szó: hogyan jöhetett létre a matematikának, ennek a nemcsak nevében, hanem tárgyában is leginkább görög tudománynak az a szép rendszere, amely számunkra Euklidész-nek a geometria "Elemiről" írt 13 könyvében maradt fönn.
- Sorozatcím:
- Gyorsuló idő
- Borító tervezők:
- Fajó János
- Kiadó:
- Magvető Kiadó
- Kiadás éve:
- 1978
- Kiadás helye:
- Budapest
- Nyomda:
- Dabasi Nyomda
- Kötés típusa:
- ragasztott papír
- Terjedelem:
- 250 oldal
- Nyelv:
- magyar
- Méret:
- Szélesség: 10.00cm, Magasság: 18.00cm
- Súly:
- 0.10kg
- Kategória:
Az ókori Kelet 10
L RÉSZ
Az EUKLIDÉSZT MEGELŐZŐ KOR
1. Thalész 19
2. Pythagorasz és tanítványai 26
3. A számok 28
4. Az arányok és a zene 45
5. A zene, a számok és az idomok 66
1. A terminológia 66
2. A zene—aritmetika—geometria 70
3. Számok-szakaszok 75
4. A váltakozva kivonás 77
5. A hasonlóság 81
6. Az aritmetikai arányelmélet 86
6. Szögek, sokszögek és a Pythagorasz-
tétel 88
7. Pythagoraszi számhármasok 102
8. A négyzet átlója I07
I1. RÉSZ
A GÖRÖG N1ATEMMIKA RENDSZERE
1. Tételek és princípiumok 117
2. A bizonyítás 125
3. A négyzet megduplázása 130
4. A páros-páratlan az Elemekben 133
5. Elemek, VIT. 31 137
6. Amit a szemünkkel látunk... 141
7. Az összemérhetetlenség 150
8. A „matematikus gondolkozás" 159
9. Dialektika és matematika 165
10. A dialektika és a matematika
terminológiája 171
11. A kétféle bizonyítás 178
12. Analízis és szintézis 183
13. A posztulátumok és axiómák 193
14. Az egész nagyobb, mint a rész 201
15. Az axiómák új neve 208
16. Az aritmetika és a geometria 214
111. RÉSZ
A „NÉGYZET•RTÉK" FOGALMA
1. Az irracionalitás fölfedezése 291
2. A középarányos 226
3. A kvadratúra 230
4. A matematikai dynamisz 238
Irodalmi tájékoztató 241
Név- és tárgymutató 245
Az Ön ajánlója
Még nincs vélemény a könyvről, legyen Ön az első aki véleményt ír róla...